Sprint training increases human skeletal muscle Na+-K-ATPase concentration and improves K+ regulation

M. J. McKenna*, T. A. Schmidt, M. Hargreaves, L. Cameron, S. L. Skinner, K. Kjeldsen

*Corresponding author af dette arbejde

    Publikation: Bidrag til tidsskriftArtikelForskningpeer review

    Abstract

    This study investigated the effects of sprint training on muscle Na+- K+-adenosinetriphosphatase (ATPase) concentration, plasma [K+] regulation, muscle performance, and fatigue during severe intermittent exercise. Six untrained male subjects underwent intensive cycle-sprint training for 7 wk. Muscle biopsies were taken at rest from the vastus lateralis muscle before and after 7 wk of training and were assayed for Na+-K+-ATPase concentration using vanadate-facilitated [3H]ouabain binding to intact samples. Before and after the training period, subjects performed four maximal 30-s exercise bouts (EB) on a cycle ergometer, each separated by a 4-min recovery. Arterialized venous blood samples were drawn immediately before and after each sprint bout and were analyzed for plasma [K+]. The work output was significantly elevated (11%) across all four EBs after training. The muscle [3H]ouabain binding site concentration was significantly increased (16%) from 333 ± 19 to 387 ± 15 (SE) pmol/g wet wt after training but was unchanged in muscle obtained from three control subjects. Plasma [K+] rose by 1-2 mmol/l with each EB and declined rapidly by the end of each recovery period. The increases in plasma [K+] resulting from each EB were significantly lower (19%) after training. The ratios of rise in plasma [K+] relative to work output during each EB were also significantly lower (27%) after training. The increased muscle [3H]ouabain binding site concentration and the reduced ratio of rise in [K+] relative to work output with exercise are both consistent with improved plasma and skeletal muscle K+ regulation after sprint training.

    OriginalsprogEngelsk
    Sider (fra-til)173-180
    Antal sider8
    TidsskriftJournal of Applied Physiology
    Vol/bind75
    Udgave nummer1
    StatusUdgivet - 1 jan. 1993

    Fingeraftryk

    Udforsk hvilke forskningsemner 'Sprint training increases human skeletal muscle Na+-K-ATPase concentration and improves K+ regulation' indeholder.

    Citationsformater