Simultaneous 31P NMR spectroscopy and EMG in exercising and recovering human skeletal muscle: Technical aspects

P. Vestergaard‐Poulsen*, C. Thomsen, T. Sinkjær, O. Henriksen

*Corresponding author af dette arbejde

    Publikation: Bidrag til tidsskriftArtikelForskningpeer review

    Abstract

    The bioenergetics of human skeletal muscle can be studied by 31P NMR spectroscopy (31P‐MRS) and by surface electromyography (SEMG). Simultaneous 31P‐MRS and SEMG permit accurate and noninvasive studies of the correlation between metabolic and electrical changes in exercising and recovering human skeletal muscle, a relationship that is still poorly understood. This study describes the optimization of skeletal muscle 31P‐MRS in a whole‐body magnet, involving surface coil design, utilization of adiabatic radio frequency pulses and advanced time‐domain fitting, to the technical design of SEMG. A nonmagnetic ergometer was used for ankle dorsi‐flexions that activated only the anterior tibia1 muscle as verified by post exercise imaging. The coil design and the adiabatic sechltanh pulse improved sensitivity by 45% and 56% respectively, compared with standard techniques. Simultaneous electromyographic recordings did not deteriorate the NMR spectra. The VARPRO time domain fitting routine was very suitable for estimating 31P muscle spectra. With these methods it was possible to accurately estimate parameters describing metabolic and electrical changes during rest, exercise and the entire recovery period with a 20‐s time resolution on a standard 1.5 T whole‐body NMR scanner.

    OriginalsprogEngelsk
    Sider (fra-til)93-102
    Antal sider10
    TidsskriftMagnetic Resonance in Medicine
    Vol/bind31
    Udgave nummer2
    DOI
    StatusUdgivet - feb. 1994

    Fingeraftryk

    Udforsk hvilke forskningsemner 'Simultaneous 31P NMR spectroscopy and EMG in exercising and recovering human skeletal muscle: Technical aspects' indeholder.

    Citationsformater