TY - JOUR
T1 - Predicting diabetes-related conditions in need of intervention
T2 - Lolland-Falster Health Study, Denmark
AU - Lophaven, Søren
AU - Bruun-Rasmussen, Neda Esmailzadeh
AU - Holmager, Therese
AU - Jepsen, Randi
AU - Kofoed-Enevoldsen, Allan
AU - Lynge, Elsebeth
N1 - © 2023 The Author(s).
PY - 2023/6/1
Y1 - 2023/6/1
N2 - In the Danish population, about one-in-ten adults have prediabetes, undiagnosed, poorly or potentially sub-regulated diabetes, for short DMRC. It is important to offer these citizens relevant healthcare intervention. We therefore built a model for prediction of prevalent DMRC. Data were derived from the Lolland-Falster Health Study undertaken in a rural-provincial area of Denmark with disadvantaged health. We included variables from public registers (age, sex, age, citizenship, marital status, socioeconomic status, residency status); from self-administered questionnaires (smoking status, alcohol use, education, self-rated health, dietary habits, physical activity); and from clinical examinations (body mass index (BMI), pulse rate, blood pressure, waist-to-hip ratio). Data were divided into training/testing datasets for development and testing of the prediction model. The study included 15,801 adults; of whom 1,575 with DMRC. Statistically significant variables in the final model included age, self-rated health, smoking status, BMI, waist-to-hip ratio, and pulse rate. In the testing dataset this model had an area under the curve (AUC) = 0.77 and a sensitivity of 50% corresponding to a specificity of 84%. In a health disadvantaged Danish population, presence of prediabetes, undiagnosed, or poorly or potentially sub-regulated diabetes could be predicted from age, self-rated health, smoking status, BMI, waist-to-hip ratio, and pulse rate. Age is known from the Danish personal identification number, self-rated health and smoking status can be obtained from simple questions, and BMI, waist-to-hip ratio, and pulse rate can be measured by any person in health care and potentially by the person him/her-self. Our model might therefore be useful as a screening tool.
AB - In the Danish population, about one-in-ten adults have prediabetes, undiagnosed, poorly or potentially sub-regulated diabetes, for short DMRC. It is important to offer these citizens relevant healthcare intervention. We therefore built a model for prediction of prevalent DMRC. Data were derived from the Lolland-Falster Health Study undertaken in a rural-provincial area of Denmark with disadvantaged health. We included variables from public registers (age, sex, age, citizenship, marital status, socioeconomic status, residency status); from self-administered questionnaires (smoking status, alcohol use, education, self-rated health, dietary habits, physical activity); and from clinical examinations (body mass index (BMI), pulse rate, blood pressure, waist-to-hip ratio). Data were divided into training/testing datasets for development and testing of the prediction model. The study included 15,801 adults; of whom 1,575 with DMRC. Statistically significant variables in the final model included age, self-rated health, smoking status, BMI, waist-to-hip ratio, and pulse rate. In the testing dataset this model had an area under the curve (AUC) = 0.77 and a sensitivity of 50% corresponding to a specificity of 84%. In a health disadvantaged Danish population, presence of prediabetes, undiagnosed, or poorly or potentially sub-regulated diabetes could be predicted from age, self-rated health, smoking status, BMI, waist-to-hip ratio, and pulse rate. Age is known from the Danish personal identification number, self-rated health and smoking status can be obtained from simple questions, and BMI, waist-to-hip ratio, and pulse rate can be measured by any person in health care and potentially by the person him/her-self. Our model might therefore be useful as a screening tool.
U2 - 10.1016/j.pmedr.2023.102215
DO - 10.1016/j.pmedr.2023.102215
M3 - Article
C2 - 37223574
SN - 2211-3355
VL - 33
SP - 102215
JO - Preventive Medicine Reports
JF - Preventive Medicine Reports
M1 - 102215
ER -