TY - JOUR
T1 - Long-term exposure to low-level arsenic in drinking water and diabetes incidence
T2 - A prospective study of the diet, Cancer and health cohort
AU - Bräuner, Elvira Vaclavik
AU - Nordsborg, Rikke Baastrup
AU - Andersen, Zorana Jovanovic
AU - Tjønneland, Anne
AU - Loft, Steffen
AU - Raaschou-Nielsen, Ole
PY - 2014/10/1
Y1 - 2014/10/1
N2 - Background: Established causes of diabetes do not fully explain the present epidemic. High-level arsenic exposure has been implicated in diabetes risk, but the effect of low-level arsenic exposure in drinking water remains unclear.Objective: We sought to determine whether long-term exposure to low-level arsenic in drinking water in Denmark is associated with an increased risk of diabetes using a large prospective cohort.Methods: During 1993-1997, we recruited 57,053 persons. We followed each cohort member for diabetes occurrence from enrollment until 31 December 2006. We traced and geocoded residential addresses of the cohort members and used a geographic information system to link addresses with water-supply areas. We estimated individual exposure to arsenic using all addresses from 1 January 1971 until the censoring date. Cox proportional hazards models were used to model the association between arsenic exposure and diabetes incidence, separately for two definitions of diabetes: all cases and a more strict definition in which cases of diabetes based solely on blood glucose results were excluded.Results: Over a mean follow-up period of 9.7 years for 52,931 eligible participants, there were a total of 4,304 (8.1%) diabetes cases, and 3,035 (5.8%) cases of diabetes based on the more strict definition. The adjusted incidence rate ratios (IRRs) per 1-μg/L increment in arsenic levels in drinking water were as follows: IRR = 1.03 (95% CI: 1.01, 1.06) and IRR = 1.02 (95% CI: 0.99, 1.05) for all and strict diabetes cases, respectively.Conclusions: Long-term exposure to low-level arsenic in drinking water may contribute to the development of diabetes.
AB - Background: Established causes of diabetes do not fully explain the present epidemic. High-level arsenic exposure has been implicated in diabetes risk, but the effect of low-level arsenic exposure in drinking water remains unclear.Objective: We sought to determine whether long-term exposure to low-level arsenic in drinking water in Denmark is associated with an increased risk of diabetes using a large prospective cohort.Methods: During 1993-1997, we recruited 57,053 persons. We followed each cohort member for diabetes occurrence from enrollment until 31 December 2006. We traced and geocoded residential addresses of the cohort members and used a geographic information system to link addresses with water-supply areas. We estimated individual exposure to arsenic using all addresses from 1 January 1971 until the censoring date. Cox proportional hazards models were used to model the association between arsenic exposure and diabetes incidence, separately for two definitions of diabetes: all cases and a more strict definition in which cases of diabetes based solely on blood glucose results were excluded.Results: Over a mean follow-up period of 9.7 years for 52,931 eligible participants, there were a total of 4,304 (8.1%) diabetes cases, and 3,035 (5.8%) cases of diabetes based on the more strict definition. The adjusted incidence rate ratios (IRRs) per 1-μg/L increment in arsenic levels in drinking water were as follows: IRR = 1.03 (95% CI: 1.01, 1.06) and IRR = 1.02 (95% CI: 0.99, 1.05) for all and strict diabetes cases, respectively.Conclusions: Long-term exposure to low-level arsenic in drinking water may contribute to the development of diabetes.
UR - http://www.scopus.com/inward/record.url?scp=84907671794&partnerID=8YFLogxK
U2 - 10.1289/ehp.1408198
DO - 10.1289/ehp.1408198
M3 - Article
C2 - 24927198
AN - SCOPUS:84907671794
VL - 122
SP - 1059
EP - 1065
JO - Environmental Health Perspectives
JF - Environmental Health Perspectives
SN - 0091-6765
IS - 10
ER -