TY - GEN
T1 - Automatic detection and classification of artifacts in single-channel EEG
AU - Olund, Thomas
AU - Duun-Henriksen, Jonas
AU - Kjaer, Troels W.
AU - Sorensen, Helge B.D.
PY - 2014/11/2
Y1 - 2014/11/2
N2 - Ambulatory EEG monitoring can provide medical doctors important diagnostic information, without hospitalizing the patient. These recordings are however more exposed to noise and artifacts compared to clinically recorded EEG. An automatic artifact detection and classification algorithm for singlechannel EEG is proposed to help identifying these artifacts. Features are extracted from the EEG signal and wavelet subbands. Subsequently a selection algorithm is applied in order to identify the best discriminating features. A non-linear support vector machine is used to discriminate among different artifact classes using the selected features. Single-channel (Fp1-F7) EEG recordings are obtained from experiments with 12 healthy subjects performing artifact inducing movements. The dataset was used to construct and validate the model. Both subject-specific and generic implementation, are investigated. The detection algorithm yield an average sensitivity and specificity above 95% for both the subject-specific and generic models. The classification algorithm show a mean accuracy of 78 and 64% for the subject-specific and generic model, respectively. The classification model was additionally validated on a reference dataset with similar results.
AB - Ambulatory EEG monitoring can provide medical doctors important diagnostic information, without hospitalizing the patient. These recordings are however more exposed to noise and artifacts compared to clinically recorded EEG. An automatic artifact detection and classification algorithm for singlechannel EEG is proposed to help identifying these artifacts. Features are extracted from the EEG signal and wavelet subbands. Subsequently a selection algorithm is applied in order to identify the best discriminating features. A non-linear support vector machine is used to discriminate among different artifact classes using the selected features. Single-channel (Fp1-F7) EEG recordings are obtained from experiments with 12 healthy subjects performing artifact inducing movements. The dataset was used to construct and validate the model. Both subject-specific and generic implementation, are investigated. The detection algorithm yield an average sensitivity and specificity above 95% for both the subject-specific and generic models. The classification algorithm show a mean accuracy of 78 and 64% for the subject-specific and generic model, respectively. The classification model was additionally validated on a reference dataset with similar results.
UR - http://www.scopus.com/inward/record.url?scp=84929493921&partnerID=8YFLogxK
U2 - 10.1109/EMBC.2014.6943742
DO - 10.1109/EMBC.2014.6943742
M3 - Conference contribution
C2 - 25570110
AN - SCOPUS:84929493921
T3 - 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
SP - 922
EP - 925
BT - 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
Y2 - 26 August 2014 through 30 August 2014
ER -