TY - JOUR
T1 - Automated seizure detection using wearable devices
T2 - A clinical practice guideline of the International League Against Epilepsy and the International Federation of Clinical Neurophysiology
AU - Beniczky, Sándor
AU - Wiebe, Samuel
AU - Jeppesen, Jesper
AU - Tatum, William O
AU - Brazdil, Milan
AU - Wang, Yuping
AU - Herman, Susan T
AU - Ryvlin, Philippe
N1 - Copyright © 2021 International Federation of Clinical Neurophysiology, Inc., International League Against Epilepsia. Published by Elsevier B.V. All rights reserved.
PY - 2021/5
Y1 - 2021/5
N2 - The objective of this clinical practice guideline (CPG) is to provide recommendations for healthcare personnel working with patients with epilepsy, on the use of wearable devices for automated seizure detection in patients with epilepsy, in outpatient, ambulatory settings. The Working Group of the International League Against Epilepsy and the International Federation of Clinical Neurophysiology developed the CPG according to the methodology proposed by the ILAE Epilepsy Guidelines Working Group. We reviewed the published evidence using The Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement and evaluated the evidence and formulated the recommendations following the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. We found high level of evidence for the accuracy of automated detection of generalized tonic-clonic seizures (GTCS) and focal-to-bilateral tonic-clonic seizures (FBTCS) and recommend use of wearable automated seizure detection devices for selected patients when accurate detection of GTCS and FBTCS is recommended as a clinical adjunct. We also found moderate level of evidence for seizure types without GTCs or FBTCs. However, it was uncertain whether the detected alarms resulted in meaningful clinical outcomes for the patients. We recommend using clinically validated devices for automated detection of GTCS and FBTCS, especially in unsupervised patients, where alarms can result in rapid intervention (weak/conditional recommendation). At present, we do not recommend clinical use of the currently available devices for other seizure types (weak/conditional recommendation). Further research and development are needed to improve the performance of automated seizure detection and to document their accuracy and clinical utility.
AB - The objective of this clinical practice guideline (CPG) is to provide recommendations for healthcare personnel working with patients with epilepsy, on the use of wearable devices for automated seizure detection in patients with epilepsy, in outpatient, ambulatory settings. The Working Group of the International League Against Epilepsy and the International Federation of Clinical Neurophysiology developed the CPG according to the methodology proposed by the ILAE Epilepsy Guidelines Working Group. We reviewed the published evidence using The Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement and evaluated the evidence and formulated the recommendations following the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. We found high level of evidence for the accuracy of automated detection of generalized tonic-clonic seizures (GTCS) and focal-to-bilateral tonic-clonic seizures (FBTCS) and recommend use of wearable automated seizure detection devices for selected patients when accurate detection of GTCS and FBTCS is recommended as a clinical adjunct. We also found moderate level of evidence for seizure types without GTCs or FBTCs. However, it was uncertain whether the detected alarms resulted in meaningful clinical outcomes for the patients. We recommend using clinically validated devices for automated detection of GTCS and FBTCS, especially in unsupervised patients, where alarms can result in rapid intervention (weak/conditional recommendation). At present, we do not recommend clinical use of the currently available devices for other seizure types (weak/conditional recommendation). Further research and development are needed to improve the performance of automated seizure detection and to document their accuracy and clinical utility.
U2 - 10.1016/j.clinph.2020.12.009
DO - 10.1016/j.clinph.2020.12.009
M3 - Review
C2 - 33678577
SN - 1388-2457
VL - 132
SP - 1173
EP - 1184
JO - Clinical Neurophysiology
JF - Clinical Neurophysiology
IS - 5
ER -