TY - JOUR
T1 - Algorithmic diagnosis of jaundice
AU - Malchow-Møller, Axel
AU - Thomsen, Carsten
PY - 1987/1/1
Y1 - 1987/1/1
N2 - Extensive clinical and clinical chemical information was collected from 1002 jaundiced patients. By applying Bayes' theorem and logistic discriminant analysis, a diagnostic algorithm was developed based upon 21 of the 107 variables collected. This algorithm permitted a probabilistic classification of jaundiced patients into four diagnostic categories: acute non-obstructive, chronic non-obstructive, benign obstructive and malignant obstructive jaundice. Of the 985 patients with a final diagnosis a correct probabilistic diagnosis (obstruction vs. non-obstruction) was suggested by the algorithm in 867 patients (88% Adopting a probability limit of 0.80, 683 patients (69% were correctly classified, 34 patients (3.5% were wrongly so, and 268 patients (27% could not be classified with a probability above 0.80 (doubtful cases). The algorithm was also tested in a further series of 110 jaundiced patients and found to perform equally well: 88 patients classified, 22 patients remaining doubtful. Patients with doubtful diagnoses should be referred to a non-invasive test such as ultrasound examination, whereas patients with definite diagnoses can be referred to invasive tests (liverbiopsy, direct cholangiography) as appropriate. The diagnostic algorithm seems to be a valuable aid for the preliminary differential diagnosis of the jaundiced patient and can be used in the planning of a diagnostic strategy for the individual patient.
AB - Extensive clinical and clinical chemical information was collected from 1002 jaundiced patients. By applying Bayes' theorem and logistic discriminant analysis, a diagnostic algorithm was developed based upon 21 of the 107 variables collected. This algorithm permitted a probabilistic classification of jaundiced patients into four diagnostic categories: acute non-obstructive, chronic non-obstructive, benign obstructive and malignant obstructive jaundice. Of the 985 patients with a final diagnosis a correct probabilistic diagnosis (obstruction vs. non-obstruction) was suggested by the algorithm in 867 patients (88% Adopting a probability limit of 0.80, 683 patients (69% were correctly classified, 34 patients (3.5% were wrongly so, and 268 patients (27% could not be classified with a probability above 0.80 (doubtful cases). The algorithm was also tested in a further series of 110 jaundiced patients and found to perform equally well: 88 patients classified, 22 patients remaining doubtful. Patients with doubtful diagnoses should be referred to a non-invasive test such as ultrasound examination, whereas patients with definite diagnoses can be referred to invasive tests (liverbiopsy, direct cholangiography) as appropriate. The diagnostic algorithm seems to be a valuable aid for the preliminary differential diagnosis of the jaundiced patient and can be used in the planning of a diagnostic strategy for the individual patient.
UR - http://www.scopus.com/inward/record.url?scp=84907122532&partnerID=8YFLogxK
U2 - 10.3109/00365528709090985
DO - 10.3109/00365528709090985
M3 - Article
C2 - 3477001
AN - SCOPUS:84907122532
SN - 0036-5521
VL - 22
SP - 162
EP - 168
JO - Scandinavian journal of gastroenterology
JF - Scandinavian journal of gastroenterology
IS - S128
ER -