TY - JOUR
T1 - AKT activation predicts outcome in breast cancer patients treated with tamoxifen
AU - Kirkegaard, Tove
AU - Witton, Caroline J
AU - McGlynn, Liane M
AU - Tovey, Sian M
AU - Dunne, Barbara
AU - Lyon, Alison
AU - Bartlett, John M S
PY - 2005/10
Y1 - 2005/10
N2 - Oestrogen receptor (ERalpha) expression is a strong predictor of response to endocrine therapy. The PI3K/AKT/mTOR signal transduction pathway has been implicated in endocrine resistance in vitro. The present study was carried out to test the hypothesis that AKT activation mediates tamoxifen resistance in clinical breast cancer. Immunohistochemistry (IHC) using AKT1-3, pan-AKT, pAKT (Thr-308), pAKT (Ser-473), pER (Ser-167), and pHER2 antibodies was performed on 402 ERalpha-positive breast carcinomas from patients treated with tamoxifen. High pAKT (Ser-473) activity (p = 0.0406) and low AKT2 expression (p = 0.0115) alone, or in combination [high pAKT (Ser-473)/low AKT2; 'high-risk' patient group] (p = 0.0014), predicted decreased overall survival in tamoxifen-treated patients with ERalpha-positive breast cancers. There was no significant association between tumour levels of AKT expression or activity and disease-free survival (DFS); however, the 'high-risk' patient group was significantly more likely to relapse (p = 0.0491). During tamoxifen treatment, neither AKT2 nor pAKT predicted DFS. Finally, activation of AKT, via phosphorylation, was linked to activation of both HER2 and ERalpha in this patient cohort. The data presented here show that the PI3K/AKT/mTOR pathway is associated with relapse and death in ERalpha-positive breast cancer patients treated with tamoxifen, supporting in vitro evidence that AKT mediates tamoxifen resistance. Patients with a 'high-risk' expression profile were at increased risk of death (hazard ratio 3.22, p = 0.002) relative to 'low-risk' patients, highlighting the potential that tumour profiling, with multiple IHC markers predictive of therapeutic response, may improve patient selection for endocrine therapies, eg tamoxifen or aromatase inhibitor-based treatments.
AB - Oestrogen receptor (ERalpha) expression is a strong predictor of response to endocrine therapy. The PI3K/AKT/mTOR signal transduction pathway has been implicated in endocrine resistance in vitro. The present study was carried out to test the hypothesis that AKT activation mediates tamoxifen resistance in clinical breast cancer. Immunohistochemistry (IHC) using AKT1-3, pan-AKT, pAKT (Thr-308), pAKT (Ser-473), pER (Ser-167), and pHER2 antibodies was performed on 402 ERalpha-positive breast carcinomas from patients treated with tamoxifen. High pAKT (Ser-473) activity (p = 0.0406) and low AKT2 expression (p = 0.0115) alone, or in combination [high pAKT (Ser-473)/low AKT2; 'high-risk' patient group] (p = 0.0014), predicted decreased overall survival in tamoxifen-treated patients with ERalpha-positive breast cancers. There was no significant association between tumour levels of AKT expression or activity and disease-free survival (DFS); however, the 'high-risk' patient group was significantly more likely to relapse (p = 0.0491). During tamoxifen treatment, neither AKT2 nor pAKT predicted DFS. Finally, activation of AKT, via phosphorylation, was linked to activation of both HER2 and ERalpha in this patient cohort. The data presented here show that the PI3K/AKT/mTOR pathway is associated with relapse and death in ERalpha-positive breast cancer patients treated with tamoxifen, supporting in vitro evidence that AKT mediates tamoxifen resistance. Patients with a 'high-risk' expression profile were at increased risk of death (hazard ratio 3.22, p = 0.002) relative to 'low-risk' patients, highlighting the potential that tumour profiling, with multiple IHC markers predictive of therapeutic response, may improve patient selection for endocrine therapies, eg tamoxifen or aromatase inhibitor-based treatments.
KW - Antineoplastic Agents, Hormonal/therapeutic use
KW - Biomarkers, Tumor/analysis
KW - Breast Neoplasms/drug therapy
KW - Epithelial Cells/pathology
KW - Female
KW - Humans
KW - Immunohistochemistry/methods
KW - Neoplasm Invasiveness/pathology
KW - Neoplasm Proteins/analysis
KW - Protein-Serine-Threonine Kinases/analysis
KW - Proto-Oncogene Proteins/analysis
KW - Proto-Oncogene Proteins c-akt
KW - Receptor, ErbB-2/analysis
KW - Receptors, Estrogen/analysis
KW - Retrospective Studies
KW - Signal Transduction
KW - Survival Analysis
KW - Tamoxifen/therapeutic use
KW - Treatment Outcome
U2 - 10.1002/path.1829
DO - 10.1002/path.1829
M3 - Article
C2 - 16088978
SN - 0022-3417
VL - 207
SP - 139
EP - 146
JO - Journal of Pathology
JF - Journal of Pathology
IS - 2
ER -